Rank of Matrix (2nd Sem)

 

Chapter

Rank of Matrix

All Lectures are available on this page 

Rank of Matrix : Definition:

A number rr is said to be the rank of a matrix AA if it possesses the following two properties:

(i) There is at least one square submatrix of AA of order rr whose determinant is not equal to zero.

(ii) If the matrix AA contains any square submatrix of order r+1r + 1, then the determinant of every square submatrix of AA of order r+1r + 1 should be zero.

In short, the rank of a matrix is the order of any highest order non-vanishing minor of the matrix.

Thus, the rank of a matrix AA is the order of any highest order square submatrix of AA whose determinant is not equal to zero.

We shall denote the rank of a matrix A by the symbol ρ(A).

It is obvious that the rank rr of an (m×n)(m \times n) matrix can at most be equal to the smaller of the numbers mm and nn, but it may be less.

If there is a matrix AA which has at least one non-zero minor of order nn and there is no minor of AA of order n+1n + 1, then the rank of AA is nn. Thus, the rank of every non-singular matrix of order nn is nn. The rank of a square matrix AA of order nn can be less than nn if and only if AA is singular, i.e., A=0|A| = 0.

Note 1:

Since the rank of every non-zero matrix is 1\geq 1, we agree to assign the rank, zero, to every null matrix.

Note 2:

Every (r+1)(r + 1)-rowed minor of a matrix can be expressed as a linear combination of its rr-rowed minors.
Therefore, if all the rr-rowed minors of a matrix are equal to zero, then obviously all its (r+1)(r + 1)-rowed minors will also be equal to zero.

Important:

The following two simple results will help us very much in finding the rank of a matrix:

(i) The rank of a matrix is r\leq r, if all (r+1)(r + 1)-rowed minors of the matrix vanish.

(ii) The rank of a matrix is r\geq r, if there is at least one -rowed minor of the matrix which is not equal to zero.

Q1: Find the rank of the following matrices:

A=[123210012]A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix}

Answer : For the solution, see the video given below (हल के लिए, नीचे दी गई विडियो देखे)

Q2: Find the rank of the following matrices:

A=[123245]

Answer : For the solution, see the video given below (हल के लिए, नीचे दी गई विडियो देखे)

Q3: Under what condition the rank of the following matrix is 3

A=[24221210x]

Answer : For the solution, see the video given below (हल के लिए, नीचे दी गई विडियो देखे)

Lecture 1

Lecture 1 PDF Download from this link

Answer : For the solution, see the video given below (हल के लिए, नीचे दी गई विडियो देखे)

Q4: Find which value of the rank of the matrix

A=[154032b1310]A = \begin{bmatrix} 1 & 5 & 4 \\ 0 & 3 & 2 \\ b & 13 & 10 \end{bmatrix}is 2?
Answer : For the solution, see the video given below (हल के लिए, नीचे दी गई विडियो देखे)

Q5: Find the values of so that rank(A)<3, where is the matrix

A=[3a83333a83333a8]A = \begin{bmatrix} 3a - 8 & 3 & 3 \\ 3 & 3a - 8 & 3 \\ 3 & 3 & 3a - 8 \end{bmatrix}

Q5: Find the values of a so that rank(A)<3, where  is the matrix

A=[3a-83333a-83333a-8]

Answer : For the solution, see the video given below (हल के लिए, नीचे दी गई विडियो देखे)

Q6: Prove that the points (x1,y1),(x2,y2)(x_1, y_1), (x_2, y_2) and (x3,y3)(x_3, y_3) are collinear if and only if the rank of the matrix

A=[x1y11x2y21x3y31]

Answer : For the solution, see the video given below (हल के लिए, नीचे दी गई विडियो देखे)

Q7: Determine the rank of matrix:

[1111111111111111]\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}

Answer : For the solution, see the video given below (हल के लिए, नीचे दी गई विडियो देखे)

Q8: Determine the rank of each of matrices:

(i) [0000]\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}


(ii) [51036]\begin{bmatrix} 5 & 10 \\ 3 & 6 \end{bmatrix}

Answer : For the solution, see the video given below (हल के लिए, नीचे दी गई विडियो देखे)

Lecture 2


Lecture 2 PDF Download from this link